Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Res Notes ; 17(1): 111, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643202

RESUMEN

OBJECTIVE: Mutational analysis of BCR::ABL1 kinase domain (KD) is a crucial component of clinical decision algorithms for chronic myeloid leukemia (CML) patients with failure or warning responses to tyrosine kinase inhibitor (TKI) therapy. This study aimed to detect BCR::ABL1 KD mutations in CML patients with treatment resistance and assess the concordance between NGS (next generation sequencing) and Sanger sequencing (SS) in detecting these mutations. RESULTS: In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Estudios de Cohortes , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Resistencia a Antineoplásicos/genética
2.
J Med Case Rep ; 17(1): 250, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296475

RESUMEN

BACKGROUND: The 18q- deletion syndrome is a rare congenital chromosomal disorder caused by a partial deletion of the long arm of chromosome 18. The diagnosis of a patient with this syndrome relies on the family medical history, physical examination, developmental assessment, and cytogenetic findings. However, the phenotype of patients with 18q- deletion syndrome can be highly variable, ranging from almost normal to severe malformations and intellectual disability, and normal cytogenetic findings are common, thus complicating the diagnosis. Interestingly, only few characteristic features of typical 18q- deletion syndrome were found in the patient, despite sharing the same critical region. To our knowledge, this is the first report of a Malaysian individual with 18q- terminal microdeletion diagnosed with microarray-based technology. CASE PRESENTATION: Here we report a 16-year-old Malaysian Chinese boy, a product of a non-consanguineous marriage, who presented with intellectual disability, facial dysmorphism, high arched palate, congenital talipes equinovarus (clubfoot), congenital scoliosis, congenital heart defect, and behavioral problems. A routine chromosome analysis on 20 metaphase cells showed a normal 46, XY G-banded karyotype. Array-based comparative genomic hybridization was performed using a commercially available 244 K 60-mer oligonucleotide microarray slide according to the manufacturer's protocol. This platform allows genome-wide survey and molecular profiling of genomic aberrations with an average resolution of about 10 kB. In addition, multiplex ligation-dependent probe amplification analysis was carried out using SALSA MLPA kit P320 Telomere-13 to confirm the array-based comparative genomic hybridization finding. Array-based comparative genomic hybridization analysis revealed a 7.3 MB terminal deletion involving chromosome band 18q22.3-qter. This finding was confirmed by multiplex ligation-dependent probe amplification, where a deletion of ten probes mapping to the 18q22.3-q23 region was detected, and further multiplex ligation-dependent probe amplification analysis on his parents showed the deletion to be de novo. CONCLUSION: The findings from this study expand the phenotypic spectrum of the 18q- deletion syndrome by presenting a variation of typical 18q- deletion syndrome features to the literature. In addition, this case report demonstrated the ability of the molecular karyotyping method, such as array-based comparative genomic hybridization, to assist in the diagnosis of cases with a highly variable phenotype and variable aberrations, such as 18q- deletion syndrome.


Asunto(s)
Trastornos de los Cromosomas , Discapacidad Intelectual , Humanos , Hibridación Genómica Comparativa , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Cromosomas Humanos Par 18/genética , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética
3.
Mol Cytogenet ; 14(1): 45, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560908

RESUMEN

BACKGROUND: Relapsed acute myeloid leukemia (AML) is associated with the acquisition of additional somatic mutations which are thought to drive phenotypic adaptability, clonal selection and evolution of leukemic clones during treatment. We performed high throughput exome sequencing of matched presentation and relapsed samples from 6 cytogenetically normal AML (CN-AML) patients treated with standard remission induction chemotherapy in order to contribute with the investigation of the mutational landscape of CN-AML and clonal evolution during AML treatment. RESULT: A total of 24 and 32 somatic variants were identified in presentation and relapse samples respectively with an average of 4.0 variants per patient at presentation and 5.3 variants per patient at relapse, with SNVs being more frequent than indels at both disease stages. All patients have somatic variants in at least one gene that is frequently mutated in AML at both disease presentation and relapse, with most of these variants are classic AML and recurrent hotspot mutations including NPM1 p.W288fs, FLT3-ITD, NRAS p.G12D and IDH2 p.R140Q. In addition, we found two distinct clonal evolution patterns of relapse: (1) a leukemic clone at disease presentation acquires additional mutations and evolves into the relapse clone after the chemotherapy; (2) a leukemic clone at disease presentation persists at relapse without the addition of novel somatic mutations. CONCLUSIONS: The findings of this study suggest that the relapse-initiating clones may pre-exist prior to therapy, which harbor or acquire mutations that confer selective advantage during chemotherapy, resulting in clonal expansion and eventually leading to relapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...